
UPCOMING JAVATM PROGRAMMING
LANGUAGE FEATURES

Alex Buckley Neal Gafter Michael D. Ernst
Spec lead, Java Language Software Engineer
Associate Professor
Sun Microsystems Google MIT

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Discover how Sun evolves the Java™
programming language and what lessons we
have learned.

Learn about plans for annotations in the Java
Platform, Standard Edition 7, and how
OpenJDK™ affects language features.

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Who we are

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Disclaimer
The information in this presentation concerns forward-
looking statements based on current expectations and
beliefs about future events that are inherently susceptible
to uncertainty and changes in circumstances etc etc etc
etc

2008 JavaOneSM Conference | java.sun.com/javaone | 5

Outline
The art and science of language evolution
Some language features under consideration
JSR 308: Annotations on Java Types
Long-term evolution
OpenJDK & The Java Programming Language

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Outline
The art and science of language evolution
Some language features under consideration
JSR 308: Annotations on Java Types
Long-term evolution
OpenJDK & The Java Programming Language

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Language evolution
We're often asked: "Why don't you add X?"
The assumption is that adding features is always good
Why is this?

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Applications v. Languages
A good application is rich
• Applications compete on basis of completeness
• User cannot do X until the application supports it
• Features rarely interact with each other
• Conclusion: More features are better

A good language is pure
• Languages are all Turing-complete
• User can always do X; the question is how elegantly
• Features often interact with each other
• Conclusion: Fewer, more regular features are better

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Fewer, more regular features are better
The barrier to entry is very high
• We need compelling reasons to add a feature
• If in doubt, leave it out
• "Just say no, until threatened with bodily harm" - James

Gosling
• Encourage creativity with the language, not in it

Of all the features we could add, which should we add?

2008 JavaOneSM Conference | java.sun.com/javaone | 10

Three pre-conditions for a Java language
feature
Respect the past
Respect the future
Respect the model

2008 JavaOneSM Conference | java.sun.com/javaone | 11

1/3: Respect the past
Programs written in the Java language are strategic assets
Adding a feature can break code
• Sorry about assert and enum
• Restricted keywords (module) are backward-compatible

Removing a feature can break code
• private protected in JDK™ version 1.0

Changing a feature can break code
• JLS2 required a trailing \n if last line in source was a

comment
• javac did not; "fixing" it to agree with JLS2 would break code
• JLS3 was loosened

A feature must be compatible with existing code

2008 JavaOneSM Conference | java.sun.com/javaone | 12

2/3: Respect the future
Leave room for syntax to breathe
• E.g. Nested modules not supported now, could be in future

Syntax/semantics of a new feature should not conflict with
syntax/semantics of an existing or potential feature

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Keyword parameters
Keyword parameters exist in annotations:
 @Point(x=3, y=4)

The obvious syntax for keyword parameters at method call
is:
 new Point(x=3, y=4)

But that already has a meaning, so the syntax would be:
 new Point(x:3, y:4)

= in annotations is inconsistent with = in expressions
Annotations should probably have used : to align with
future keyword parameters at method call
A feature must allow consistent evolution

2008 JavaOneSM Conference | java.sun.com/javaone | 14

3/3: Respect the model
A language reflects a computational model
• Simula: Object orientation Classes
• CLU: Data abstraction Interfaces
• Erlang: Inter-process communication Actors

The Java language has a simple computational model
• High-level ("General-purpose, concurrent, class-based, object-

oriented")
• Civilized relationship to APIs (java.lang.String, java.lang.Throwable)
• Aligned with the JVM (Accessibility, inheritance, dynamic linking)

Evolution can make a language more regular within its
model
• Improves consistency
• E.g. Strings in switch

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Respecting the model
A more abstract model encourages a more abstract
language
A more abstract language encourages more abstract
programs
• If you can only express 'procedure', you will not program 'objects'

• If you can only express 'error code', you will not program 'exceptions'

• If you can only express 'thread', you will not program 'actors'

A more abstract program is easier to understand and
maintain
Evolution can make a language reflect a more abstract
model
• Improves expressiveness

• E.g. Generics

A feature must allow more regular, abstract programs

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Four principles that recognize the Java
model

Encourage high-level practices
Covet clarity
Prefer static typing
Isolate the language from APIs

2008 JavaOneSM Conference | java.sun.com/javaone | 17

1/4: A program's meaning is hidden by accidental
complexity

Fred Brooks, "No Silver Bullet"

 "What does a high-level language accomplish?
It frees a program from much of its accidental complexity.

 An abstract program consists of conceptual constructs:
operations, datatypes, sequences, and communication.

 The concrete machine program is concerned with
bits, registers, conditions, branches, channels, disks, and such.

 To the extent that the high-level language embodies the constructs
 wanted in the abstract program ... it eliminates a whole level of
 complexity that was never inherent in the program at all."

Principle 1: Encourage high-level practices

2008 JavaOneSM Conference | java.sun.com/javaone | 18

2/4: A program is read more often than it is written
Clear code is easiest to read
• Directly expresses the programmer's intent in solving the problem
• Uses the language idiomatically (respects the computational

model)
• Minimizes implementation artifacts (accidental complexity)

Language abstractions are the primary enabler of clear
code
• Java: Interfaces, exceptions (OO model)
• Scala: Traits, pattern matching (OO/Functional model)
• Erlang: Message passing (Communication model)

Principle 2: Covet clarity

2008 JavaOneSM Conference | java.sun.com/javaone | 19

3/4: A static type system increases confidence in
code

Static typing proves the absence of (some) bugs at compile-
time
Testing and dynamic typing can only prove the presence of
bugs
Formal documentation is complete; narrative text is not
Most Java keywords are about static typing

abstract continue for new switch
assert default if package synchronized
boolean do goto private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

Principle 3: Prefer static typing

2008 JavaOneSM Conference | java.sun.com/javaone | 20

4/4: A language is more widespread than its
APIs

One language, many APIs
APIs come and go but a language is forever
• APIs are deprecated far more than language features
• A language will be compromised by linkage to a deprecated

API
• The JLS used to define java.lang

Principle 4: Isolate the language from APIs

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Recap: Principles for Java language
evolution

Encourage high-level practices
• Do the right thing

Covet clarity
• Do the thing right

Prefer static typing
• Stay safe

Isolate the language from APIs
• Stay abstract

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Outline
The art and science of language evolution
Some language features under consideration
JSR 308: Annotations on Java Types
Long-term evolution
OpenJDK & The Java Programming Language

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Multi-catch
try { ... }
catch (X1 e) { foo(); }
catch (X2 e) { foo(); }
catch (X3 e) { bar(); }

A longstanding request is to allow catching X1 and X2
together, without resorting to catching Exception itself

try { ... }
catch (X1,X2 e) { foo(); }
catch (X3 e) { bar(); }

A disjunctive type X1,X2 represents X1 or X2
• The members of e are those of a common superclass

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Safe re-throw
 void m() throws X1,X2 {
 try { /* Something that can throw X1,X2 */ }
 catch (Throwable e) {
 logger.log(e);
 throw e; // Error: Unreported exception Throwable
 }
}
We want to express we're rethrowing the exception in the try{}
void m() throws X1,X2 {
 try { /* Something that can throw X1,X2 */ }
 catch (final Throwable e) {
 logger.log(e);
 throw e; // Compiles OK; can throw X1,X2
 }
}

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Modular programming in Java today
Packages
• Package names are hierarchical
• Package membership is not

Access control
• Types shared across packages must be made public
• Hope no-one finds your "internal" packages
• Rely on comments/documentation to describe "official" APIs

Interfaces
• Not always desirable to have all members be public

2008 JavaOneSM Conference | java.sun.com/javaone | 26

A typical package hierarchy
org/
 netbeans/
 core/
 Debugger.class
 ...
 utils/
 ErrorTracker.class
 ...
 wizards/
 JavaFXApp.class
 ...
 addins/
 ...

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Classes in different packages need to
collaborate

org/
 netbeans/
 core/
 Debugger.class
 ...
 utils/
 ErrorTracker.class
 ...
 wizards/
 JavaFXApp.class
 ...
 addins/
 ...

2008 JavaOneSM Conference | java.sun.com/javaone | 28

org.netbeans.core is an obvious "unit"
org/
 netbeans/
 core/
 Debugger.class
 ...
 utils/
 ErrorTracker.class
 ...
 wizards/
 JavaFXApp.class
 ...
 addins/
 ...

2008 JavaOneSM Conference | java.sun.com/javaone | 29

org.netbeans.core is a conceptual
"module"

org/
 netbeans/
 core/
 Debugger.class
 ...
 utils/
 ErrorTracker.class
 ...
 wizards/
 JavaFXApp.class
 ...
 addins/
 ...

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Modules in the Java language
// org/netbeans/core/Debugger.java
module org.netbeans.core;
package org.netbeans.core;
public class Debugger {
 ... new ErrorTracker() ...
}

Module
concept in the

language

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Modules in the Java language
// org/netbeans/core/Debugger.java
module org.netbeans.core;
package org.netbeans.core;
public class Debugger {
 ... new ErrorTracker() ...
}
// org/netbeans/core/utils/ErrorTracker.java
module org.netbeans.core;
package org.netbeans.core.utils;
module class ErrorTracker {
 module int getErrorLine() { ... }
}

Module
concept in the

language

Module
access

specified in
the language

One module
has many
packages

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Modules in the Java language
// org/netbeans/core/Debugger.java
module org.netbeans.core;
package org.netbeans.core;
public class Debugger {
 ... new ErrorTracker() ...
}
// org/netbeans/core/utils/ErrorTracker.java
module org.netbeans.core;
package org.netbeans.core.utils;
module class ErrorTracker {
 module int getErrorLine() { ... }
}
// org/netbeans/core/module-info.java
@Version("7.0")
@ImportModule(name="java.se.core", version="1.7+")
module org.netbeans.core;

Module
concept in the

language

Module
access

specified in
the language

Module
dependencies

specified in
the language

One module
has many
packages

2008 JavaOneSM Conference | java.sun.com/javaone | 33

Compiling and running a Java module
javac org/netbeans/core/*
javac org/netbeans/core/utils/*

java org.netbeans.core.Debugger

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Impact of modules in the language & VM
module restricted keyword

module-info.java for module-level annotations

package-info.java can declare module membership

Classfile attribute for module membership

Classfile flag for "module-private" accessibility

Module-private accessibility enforced by the Java Virtual
Machine

javadoc and javap understand modules in .java and .class files

2008 JavaOneSM Conference | java.sun.com/javaone | 35

Outline
The art and science of language evolution
Some language features under consideration
JSR 308: Annotations on Java Types
Long-term evolution
OpenJDK & The Java Programming Language

2008 JavaOneSM Conference | java.sun.com/javaone | 36

JSR 308: Annotations on Java Types
Two problems with annotations in Java 1.5:
1. Syntactic limitation on annotations

• Can only be written on declarations
2. Semantic limitation of the type system

• Doesn't prevent enough bugs

JSR 308 addresses these problems:
• Extends Java programming language syntax to permit

annotations in more locations
• Enables creation of more powerful annotation processors

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Syntactic problem: Annotations on declarations
only

Classes
package java.security;
@Deprecated class Signer { ... }

Methods
@Test void additionWorks() { assert 1 + 1 == 2; }
@Override boolean equals(MyClass other) // warning

Fields
@CommandLineArg(name="input", required=true)
private String inputFilename;

Locals/statements
List<Object> objs = ...;
@SuppressWarnings List<String> strings = objs;

Goal: Write annotations on type uses

2008 JavaOneSM Conference | java.sun.com/javaone | 38

JSR 308: Annotations on generics and
arrays

Generics:

List<@NonNull String> strings;

class UnmodifiableList<T>
 implements @Readonly List<@Readonly T> {
 ...
}

Arrays are treated analogously
• Separately annotate the element type and the array itself

2008 JavaOneSM Conference | java.sun.com/javaone | 39

JSR 308: Annotations on local variables

@Interned String s = getName().intern();

@NonEmpty List<String> strings = ...;

Possible to annotate local variables today but annotations
are not preserved in the class file

2008 JavaOneSM Conference | java.sun.com/javaone | 40

JSR 308: Annotations on casts
// Both variables are null, or neither is.
Pattern startRegex, endRegex;
...
if (startRegex != null) {
 endRegex = (@NonNull Pattern) endRegex;
 ...
}

Graph g = new Graph();
...
...
// Now, g will not be changed any more
@Immutable Graph g2 = (@Immutable Graph) g;

} add nodes and
edges

2008 JavaOneSM Conference | java.sun.com/javaone | 41

JSR 308: Annotations on the receiver
(this)

It is possible to annotate formal parameters today

 /** Method body does not modify jaxbElement */
void marshal(@Readonly Object jaxbElement,

 @Mutable Writer writer)
{ .. }

It should be possible to annotate the receiver too

 /** myMarshaller.marshal(myJaxb, myWriter)
 * does not modify myMarshaller */
 void marshal(@Readonly Object jaxbElement,
 @Mutable Writer writer) @Readonly
{ .. }

2008 JavaOneSM Conference | java.sun.com/javaone | 42

Semantic problem: Weak type checking
Type checking prevents many bugs
• int i = “JSR 308”;

Type checking doesn't prevent enough bugs
• getValue().toString(); // NullPointerException

Cannot express important properties about code
• Non-null, interned, immutable, encrypted, tainted, ...

Solution: pluggable type systems
• Design a type system to solve a specific problem
• Annotate your code with type qualifiers
• Type checker warns about violations (bugs)
• Using annotations insulates the language in case we make a

mistake designing the type system

2008 JavaOneSM Conference | java.sun.com/javaone | 43

Pluggable checkers in practice
Scales to >200,000 LOC
Found bugs in every codebase

Comparison to other null dereference checkers (on a
5KLOC codebase)

Errors False Annotations
Found Missed warnings written

JSR 308 8 0 4 35
FindBugs 0 8 1 0
Jlint 0 8 8 0
PMD 0 8 0 0

2008 JavaOneSM Conference | java.sun.com/javaone | 44

Usability
Programmers found the checkers easy to use
Is it too verbose?
• @NonNull: 1 per 75 lines
• @Interned: 124 annotations in 220KLOC revealed 11 bugs
• Possible to annotate part of program
• Fewer annotations in new code

Is it hard to build a new checker?
• Most users don't have to
• Basic functionality: mention annotation on command line
• More advanced functionality: using the Checkers Framework,

just override a few methods

2008 JavaOneSM Conference | java.sun.com/javaone | 45

Demo of pluggable type-checking

BOF-5031, 7.30pm tonight

2008 JavaOneSM Conference | java.sun.com/javaone | 46

JSR 308: How to get involved
Web search for "JSR 308" or "Annotations on Java types"
Completely open mailing list
Specification document
Reference implementation (patch to OpenJDK compiler)
Checkers Framework
• 5 checkers built so far
• @NonNull @Interned @Readonly @Immutable
• Basic checker (for any annotation name)

Go forth and prevent bugs!

2008 JavaOneSM Conference | java.sun.com/javaone | 47

Outline
The art and science of language evolution
Some language features under consideration
JSR 308: Annotations on Java Types
Long-term evolution
OpenJDK & The Java Programming Language

2008 JavaOneSM Conference | java.sun.com/javaone | 48

Long-term evolution: areas of interest
Abstraction
• Parallel algorithms

Component adaptation
• Interface evolution via first-class versioning
• Delegation / Forwarding
• Extension methods / Scala views

Practical structural typing
• See Aldrich & Malayeri at ECOOP 2008

Pluggable literal syntaxes
• Integration with other languages via JSR-223

2008 JavaOneSM Conference | java.sun.com/javaone | 49

Long-term evolution: areas of non-interest
User-defined operator overloading
Multimethods
Macros
Dynamic typing

Keeping something out of the Java programming language
does not imply keeping it out of the Java platform
• JavaFX™ Script
• JRuby
• Jython
• Groovy
• Scala

2008 JavaOneSM Conference | java.sun.com/javaone | 50

Outline
The art and science of language evolution
Some language features under consideration
JSR 308: Annotations on Java Types
Long-term evolution
OpenJDK & The Java Programming Language

2008 JavaOneSM Conference | java.sun.com/javaone | 51

OpenJDK & The Java Programming
Language

The OpenJDK Compiler Group discusses javac
implementation
It is not the place to discuss Java language design
It is the place to bring spec-compliant bug fixes
Performance improvements and better diagnostics too
Patches must not silently change the language

Bug 4741726: allow Object+=String
2002: Proposed as a spec change by Neal
2005: Accepted in JLS3 but not in javac
2008: Michael Bailey questioned whether JLS or javac is
right
2008: First javac fix through the OpenJDK process :-)

2008 JavaOneSM Conference | java.sun.com/javaone | 52

OpenJDK & The Kitchen Sink Language
James Gosling:

"Throw stuff into the

kitchen sink without
thinking too hard
about whether or not
it's a good idea.

Let folk kick the
tires.

Those experiences
inform the choice of
which features go
into the standard."

2008 JavaOneSM Conference | java.sun.com/javaone | 53

OpenJDK & The Kitchen Sink Language
The KSL is a virtual language: Java language + your ideas
Host your javac patches on your blog or Web site
Mail the OpenJDK Compiler Group with the URL
Try to update the Java Language and VM Specs too
• See Joe Darcy's blog on "So you want to change the Java

Programming Language..."

2008 JavaOneSM Conference | java.sun.com/javaone | 54

Signing off...
Thanks to Josh Bloch, Joe Darcy, Jon Gibbons, Brian
Goetz, Eamonn McManus

http://blogs.sun.com/abuckley/
http://gafter.blogspot.com/
http://openjdk.java.net/groups/compiler/
http://pag.csail.mit.edu/jsr308/

"Upcoming Java Programming Language Features"
• BOF-5031, tonight 7.30pm

"Modularity in the Java Platform"
• TS-6175, Wednesday 10:50 - 11:50

2008 JavaOneSM Conference | java.sun.com/javaone | 55

Alex Buckley / Neal Gafter / Michael D. Ernst
Sun / Google / MIT

